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V. Conclusion

ll1l. Results

|. Background

* Flood mapping Is a critical task in disaster

management, with multispectral satellite Finding 1. Deep active learning iIs effective in selecting informative samples for flood mapping training.

= \We introduced a novel framework of

imagery as one of the primary data sources. = Predictive uncertainty-based acquisition functions, such o0 o - I Interpretable Deep Active Learning for Flood
= While advances In deep learning have led to its as Margin and Entropy, demonstrated superior 085 o iInundation Mapping (IDAL-FIM).
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time-consuming and labor-intensive data indices within the IDAL-FIM framework.

= Models trained on subsets of the dataset (n = 500)
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= Deep active learning is a feasible strategy to acquisition functions achieved performance comparable o e e O B oy e Margi llustrated how the behaviors of deep active
overcome these limitations, though research on to models trained on the entire dataset (n=1532. mFl-scorery MF1-SCOreRandom-—500 learning can be interpreted using these two
Its interpretability remains limited in flood Fig 2. The comparison of the mean Fl-score in different five acquisition functions .. .
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' Finding 2: The proposed class ambiguity indices show a statistically significant correlation with the scores of framework.
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the predictive uncertainty-based acquisition functions. = From the perspective of class ambiguity indices,
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= Dataset: Sen1FEloods11 o | = | | [l suggests that the proposed class_ arr_lblgw_ty |
« Flood mapping benchmark dataset (Bonafilia et " MDF and the scores of the predictive uncertainty-based N ] I indices could function as a quantitative criterion
al., 2020) acquisition functions demonstrate a negative rank = . T | for determmmg when to update the unlabeled
= 11 global flood events from 2016 to 2019 correlation. s e data pool.
= Unlabeled pool (8 events), target (3 events) » When combining our findings with the uncertainty £y [ | li -
= 446 data samples with manually labeled data, propagation theory, the observed statistically significant & E‘O"‘" * i , + || | F ﬁ |l ! ! .
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index for limited spatial resolution Finding 3: The proposed class ambiguity indices are effective variables for interpreting the behavior of active
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Fig 1. The process of the IDAL-FIM framework. assumes uniform width and height (I).
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